Resolvents of elliptic cone operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolvents of Elliptic Cone Operators

We prove the existence of sectors of minimal growth for general closed extensions of elliptic cone operators under natural ellipticity conditions. This is achieved by the construction of a suitable parametrix and reduction to the boundary. Special attention is devoted to the clarification of the analytic structure of the resolvent.

متن کامل

Dynamics on Grassmannians and Resolvents of Cone Operators

The paper proves the existence and elucidates the structure of the asymptotic expansion of the trace of the resolvent of a closed extension of a general elliptic cone operator on a compact manifold with boundary as the spectral parameter tends to infinity. The hypotheses involve only minimal conditions on the symbols of the operator. The results combine previous investigations by the authors on...

متن کامل

Adjoints of Elliptic Cone Operators

We study the adjointness problem for the closed extensions of a general b-elliptic operator A ∈ x Diffmb (M ;E), ν > 0, initially defined as an unbounded operator A : C∞ c (M ;E) ⊂ x L b (M ;E) → xL b (M ;E), μ ∈ R. The case where A is a symmetric semibounded operator is of particular interest, and we give a complete description of the domain of the Friedrichs extension of such an operator.

متن کامل

Maximum-norm estimates for resolvents of elliptic finite element operators

Let Ω be a convex domain with smooth boundary in Rd. It has been shown recently that the semigroup generated by the discrete Laplacian for quasi-uniform families of piecewise linear finite element spaces on Ω is analytic with respect to the maximum-norm, uniformly in the mesh-width. This implies a resolvent estimate of standard form in the maximum-norm outside some sector in the right halfplane...

متن کامل

Resolvents of Cone Pseudodifferential Operators, Asymptotic Expansions and Applications

We study the structure and asymptotic behavior of the resolvent of elliptic cone pseudodifferential operators acting on weighted Sobolev spaces over a compact manifold with boundary. We obtain an asymptotic expansion of the resolvent as the spectral parameter tends to infinity, and use it to derive corresponding heat trace and zeta function expansions as well as an analytic index formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2006

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2006.07.010